IDRIJA

Slovenia - one of the smallest and youngest states in the heart of Europe - lies at the meeting point of the Alps, the Dinaric world, the Panonian plain and, to the extreme southwest, extends to the Adriatic Sea. With a total area of 20,256 km² and a population of two million, Slovenia cannot compete with neighbouring countries in terms of size, yet the diversity of its landscape, natural attractions and rich cultural heritage make it amazingly unique.

Figure 1: Slovenia on the World map.

![Image](image1.png)

Figure 2: Idrija coat-of-arms.

In northwestern Slovenia lies the oldest Slovene mining town **Idrija** - a town of natural sciences and technical development. Over the centuries, the town grew together with the mine and developed into an administrative, economic and cultural centre of the region.

The Municipality of Idrija extends over an area of 294 km² and numbers around 12,000 inhabitants. The population density is rather low: only 40 inhabitants per km². Much more satisfying is the fact that out of this number some 8250 citizens are actively employed, which is high above the Slovenian average. The Municipality of Idrija is thus luckily not beset with any significant employment problems. Around 300 large and small-sized enterprises are active in its area, as are well over 500 independent entrepreneurs. Forests cover 80 % of the municipal territory, whereas agricultural surfaces cover fewer than 20 %. The lengths of the entire road network amounts to approximately 460 kilometres. From all stated numbers it should not be hard to deduce that the economic basis of the Idrija region is fairly solid. It should be particularly emphasised that in region – among other signs of bright perspectives for the future – tourism is gaining in significance. Since the tourist offer stems precisely from a wealth of technical and cultural-historical monuments, we may talk of the phenomenon of “culture” tourism.
Inhabitants of Idrija are increasingly aware that the quality presentation of a well-preserved heritage belongs among the key economic development factors.

Idrija and its mining history

Located at the meeting point of the Prealpine world and the Karst, the town of Idrija is squeezed into a narrow basin at the confluence of the Idrijca and Nikova rivers, and lies above the second largest mercury ore deposit on our planet. Throughout its history, the Idrija Mine produced 147,000 tons of mercury, which represents over 13% of the total world production of this metal. This would not have been possible without continuous scientific and technological development, complemented by the immense courage of ten thousand miners, who bravely descended into the underground one hundred million times in five centuries and dug more than 700 kms of mine shafts.

![Figure 3: Idrija is located in a deep basin and surrounded by hills.](image)

In the Idrija Mine, mercury appears in the form of shiny droplets of native mercury and red cinnabar ore, which is burned at temperatures above 800°C in order to obtain this precious liquid metal. It was already known to ancient civilizations; the most valued was cinnabar, primarily because of its lasting red colour. Alchemists also named it "mercurium" and attempted to transform it into gold and philosopher's stone. Until recently, mercury was widely used in science, medicine, technology and industry.

As the legend says, native mercury was discovered in 1490 by a tubmaker who was soaking wooden products in a stream. Soon, fortune-seekers began to arrive in this sparsely settled valley from near and far.

![Figure 4: Mercury - the only liquid metal.](image)
The discovery of a rich ore vein on June 22, 1508 triggered the rapid development of the mine. St. Achacius' Day became a festival day of Idrija's miners.

In the first third of the 16th century above the town was built a castle named Gewerkenegg, which means "miner's castle", to protect the stocks of wheat and mercury against invading Turks. As noted by the German metallurgist, Agricola, in the late 16th century mercury ore was excavated at a depth of 170 meters. At the time, the Idrija Mine was administered directly by the Austrian Court and contributed one third to the total income of all mines operating in the monarchy.

In his famous work, "The Glory of the Duchy of Carniola", published in 1689, Janez Vajkard Valvasor presented the first depiction of Idrija and described the amazing equipment of the mine, which had no parallel in the country. Its most important customer was the Latin America, and its traditional competitor on the mercury market was Almadén in Spain.

The 18th century was marked by numerous distinguished personalities. A native of Idrija, Jožef Mrak, constructed the magnificent "klavže" - stone water barriers used to float timber from the surrounding hills. Because of their monumental appearance, they have been named the Slovene pyramids.

Joannes Antonius Scopoli and Balthasar Hacquet, recognized natural scientists, worked in Idrija as physicians and endeavoured to improve the health of miners, who were massively suffering from mercurialism - a poisoning caused by mercury vapours.
The greatest technological achievement was undoubtedly the "kamšt". A water pump with a giant wooden wheel having a diameter of 13.6 metres, which had been used to pump water from the pit for 160 years.

![Figure 7: Kamšt – the largest water wheel in Europe.](image)

At the end of the 18th century, Idrija had a population of 3,600 and was the second largest town in Carniola, surpassed only by Ljubljana. In the period of Empress Maria Theresa, a mine storehouse for wheat and the oldest theatre building in Slovenia were built. Miners began to build their homes on the nearby slopes.

In the first half of the 19th century, the mine began to employ the first two steam machines in Slovenia and modernized all its facilities, in particular the smeltery. The mine's flourishing was also reflected in the external appearance and social life of the town. In 1876, the new popular school building was built, whose construction was financed by the mine. In those days it was reputed as one of the largest and most impressive school buildings in Slovenia. In the same year The Lace School was established. A variety of social activities and the existence of numerous societies enriched the lives of miners and inhabitants.

The turn of the 20th century brought, in the field of technical development, the discovery of electricity and, in the fields of culture and education, the establishment of the first Slovene classical secondary school in Idrija in 1901.

The late sixties saw the beginning of a crisis on world mercury markets. In 1977, excavation works were temporarily stopped in the Idrija Mine, and ten years later the government adopted a decision on its gradual shutdown.

Today the town is building its future on the electric-processing industry, led by its most successful companys, Kolektor and Hidria. From the famous and rich industrial tradition there developed in the 1970s new kind of industry has grown with high technology and technical knowledge. The name Idrija is once again returning to the world with great success.

Unique cultural heritage

The concern shown by Idrija's inhabitants for the town's mining heritage is reflected in the preserved historical, ethnological and technical monuments of exceptional value, which attract many visitors each year.

Idrija Castle, which dominates the old town core, has preserved its historical name Gewerkenegg, which means "miner's castle". It was occupied by the mine administration for more than 400 years.
Today the castle houses the Idrija Municipal Museum, which was proclaimed European Museum of the Year in 1997 for its remarkable technical and industrial heritage. The central exhibition offers an insight into the five-hundred-year history of the mercury mine and the town. In summer, the castle courtyard is the scene of many cultural events, such as concerts, which are known to the public as the "Castle Evenings".

Figure 8: Gewerkenegg Castle

Figure 9: “Castle evening” on Gewerkenegg Castle

Anthony's Main Road was built in 1500 and is one of the oldest preserved mine entrances in Europe. Today it is no longer used by miners, but invites curious visitors through the museum part of the mine, accompanied by an experienced guide. After 300 metres, we shall stop at the Chapel of the Holy Trinity from the 18th century, where miners prayed each day to St. Achacius and Saint Barbara before descending one thousand steps along Attems’ shaft to their workplaces in the pit.
The entrance building of Francisca’s shaft, houses a technical museum, where 21 restored mine machines and devices are displayed. Only a few steps away is a renovated miner's house from the second half of the 18th century.

The Church of the Holy Trinity, built in 1500, is believed to be the oldest church in Idrija. It stands on the spot where, according to legend, a tubmaker once discovered native mercury.

![Figure 10: Church of the Holy Trinity](image)

The Town Hall was built in 1898. This stately building today houses the municipal administration. In popular school it is the home of the Lace School which, together with its departments in the municipalities of Idrija and Cerkno, offers training courses to more than 500 students each year. It is dedicated to preserving the knowledge of numerous lacemaking techniques and elements. The products made by its students are displayed in the school’s exhibition room. Many of these lace pieces are true masterpieces. Visitors are invited to attend a lacemaking demonstration and purchase professional literature and lace articles.

At the end of August the opening ceremony of the Lace Festival – the largest tourist event in Idrija – takes place on the platform in front of the school.

![Figure 11: Idrija lace.](image)
From the first half of the 16th century until the beginning of the 19th century, the Intercontinental Camino Real connected Europe with a large part of South America under the patronage of the Spanish Court. In those times, Idrija was, alongside Almadén, the most important exporter of mercury. The mercury route that forms part of the Camino Real includes the main centres of extraction, processing and sale of this precious metal to other parts of the world.

![Figure 12: Transporting mercury in barrels and sacks.](image)

A monopolistic role in the trading of mercury and silver on the Camino Real was played by the Spanish Court, which acquired its main quantities of mercury from Almadén. After these became insufficient, mercury was occasionally supplied from Idrija and from Huancavelica in Peru. The discovery of mercury in Idrija dates back to the year 1490. Mercury was first used in medicine and in alchemy, and was exported to Italy, Egypt, the Near East and India. The discovery of the amalgamation process in 1555 was followed by a technological revolution and the unexpected flourishing of mercury processing. Mercury became the driving force of the economy of southern Europe in that time. Along the same routes Idrija imported vital materials for its growing population. And the precious knowledge and discoveries that spread out into the world from Idrija in that time had a significant impact on the development of mankind up to the present times.

Producing more than 13% of the world's mercury output, the Idrija Mine was, by the quantity of extracted mercury, the second largest mercury mine in the world. Only the Spanish Almadén produced larger quantities of mercury.

The mercury mines of Idrija and Almadén in Spain and the historical city of San Luis Potsí in Mexico with their rich cultural and technical heritage have applied for inscription on UNESCO’s World Heritage List.

The second largest settlement in the Idrijan Municipality with its 1800 inhabitants is Spodnja Idrija. Spodnja Idrija is actually much older than the neighbouring and larger Idrija. While the Idrijan Valley was during the Middle Ages still predominantly covered by forests, the valley of the Idrijca river was already well populated. The settlement thus boasts a rich cultural heritage and an 800-year-long documented historical past. The town and its environs boast a rich cultural heritage, which comprises folk tradition, ethnological curiosities, rural frescos, and remnants of fold architecture. On the one side of the riverbank stands the Kenda Mansion and shows off its charms. It is the successor of a former, monumental farm estate, which has been reconstructed into a modern, high-class catering complex. The roots reach back into the Late Middle Ages, when its first proprietors managed the farm estate above the Idrijca river.
The general tidiness of the town has been in recent years significantly enhanced by the added care for its greenery and flowers. For its endeavours, Spodnja Idrija was granted a silver medal in the framework of the European competition project, Entente Florale, in 2001.

Unique geology of the Idrija area with famous mercury ore deposit

The Idrija ore deposit comes second in size after Spain's Almadén. However, the deposit is not only big in size among mercury mines, it is of global importance and significant because of the circumstances in which it was formed. Its exceptionally rich and unusual ores, geochemical and mineral composites and the uncommon transformation processes that make for its current state. Today's composition seems at first glance to be an incomprehensible and unsolvable geological chaos.

This explains the importance of the explorations by geologists, who managed to reconstruct the creation and the development of the mine throughout its geological history. The first geological data on the Idrija ore deposit was collected in the mid-18th century.

The events during the formation of the Triassic composition of the ore deposits and the various mercury ores and the transformation of the former structure of the deposit to its current state are truly unusual and rightfully attract worldwide attention. The unusual story is supported by various geological data, preserved mainly in the ore deposits and the Idrija's surrounding. Further data on the processes taking place during the formation of the Idrija deposit can be found in Slovenia and abroad. Geological events are written in the rocks in the form of their mineral and chemical composition, their internal structure and texture, their position in geological strata and the changes in the vertical and lateral directions, relations of various rocks among themselves and the contacts between them (normal, erosion- or tectonics-induced).

Extensive material geological proof on the formation of the Middle Triassic structure of the ore deposit and the mercury ores and its transformation into its current state are preserved and presented as part of the mine's collection, on display in Francis's shaft.

Formation of the Mercury Ores

The Idrija ore deposit is rightfully admired around the world because of its rich and interesting cinnabar ores (HgS). The Idrija cinnabar ores were formed in two ways, an unusual occurrence for mercury ore deposits. The first method of forming saw the ore-bearing fluids trickling across the trenches and fractures through the older rocks of the Idrija ore deposit - the Carboniferous Permian, Scythian and Anisian rocks.

The hot waters dissolved the soluble minerals, especially calcite leaving numerous small holes in the rocks. Mercury (Hg) and sulphur (S) from the ore-bearing fluids were slowly combining into the mineral cinnabar (HgS) or non-crystallised cinnabar gel, as pressure was slowly released and the thermal waters cooled from 218°C to 160°C. The holes in the rocks, open fractures and fissures were in such a way gradually filled by cinnabar. If not enough sulphur was present, native mercury was excreted instead (shales impregnated with mercury droplets).
The ores formed in such a way are called epigenetic cinnabar ores. They are normal and well documented in other mercury deposits in the world. Idrija's uniqueness meanwhile lies in its syngenetic or sedimental cinnabar ores, found nowhere else. Their formation was caused by the outpouring of the thermal waters, enriched by mercury and sulphur, or directly with the cinnabar gel, into the then existing swamp where various marsh sedimentary rocks have also been formed.

In short, epigenetic cinnabar ores were formed by supplementing older rocks, filling up of faults and cracks, while syngenetic are sedimental as they were formed at the same time as the rocks that they are located in. Some 158 ore deposits of various sizes and richness (141 with cinnabar ore and 17 with native mercury) were formed as part of the creation of the Idrija Middle Triassic tectonic trench.
The mining names for the rich Idrija cinnabar ores were mainly given according to their colour, internal structure and the percentage of mercury, but less by their composition. The richest ores have names such as jeklenka (steel ore), opekovka (brick ore), jetrenka (liver ore), while ores, characteristic for the Idrija ore deposit, are the karoli (coral) ore, various types of sediment ores and the shale ore with a large percentage of native mercury.

The miners and metallurgy experts decided for the following divisions in relation to the percentage of mercury in the ore: Jeklenka (very rich in mercury), rich ore and the poor ore, so called “bašperh”.

The Formation of Idrija’s Ore Deposit as it Exists Today

After the Middle Triassic tectonics abated, the ore-bearing rocks were believed to have been covered by some 5,500 metres of younger rocks of the Upper Triassic, Jurassic, Cretaceous and Palaeocene and Eocene. The Alps mountain range meanwhile began forming in Oligocene and early Miocene, as the smaller Adriatic plate started pushing against the European plate. This caused extensive changes in Slovenia, gradually resulting in the geological situation that is present today. The Idrija Middle Triassic Tectonic Trench was also included in the changes and so was, of course, the ore deposit.

The transformation of the Triassic structure of the ore deposit into the one we know today cannot be explained in simple terms, as it resulted from numerous and complicated events, also linked to the transformation of the entire area of Southern Alps. The pushing of the Adriatic plate under the European caused folds in several rock strata, creating an extensive fold. Folding resulted in the fractures which caused parts of the ore deposit to move in a south-westerly direction. The final transformation of the large fold with the Idrija ore deposit at its upper part, created folding lines, extensive nearly horizontal tectonic contacts alongside which the deposit was pushed some 35 kilometres towards the SE, where it remains until today. Another extensive system of fractures was created several million years ago, including the regional Idrija and Zala faults that cut the already greatly transformed Idrija ore deposit into individual chunks and moved them towards the SE and also vertically. The final result of the above mentioned events is the uniquely chaotic structure of the ore deposit.
Idrija's geological collections – the preservation of natural heritage

With the development of the Mine and the extraction of mercury ore, a number of natural particularities and attractions were discovered and have been preserved. Today, Idrija has, in addition to its technical heritage, a rich natural heritage – a souvenir of five hundred years of mining activities. A significant part of this natural heritage comprises rocks, fossils and ores from the Idrija ore deposit and its nearby surroundings, which are today displayed in collections kept at the Idrija Mercury Mine.

There are no written records of existing collections at the Idrija Mine up to the middle of the 18th century. In this period, mine employees already had their own smaller collections of Idrija minerals and ores. The famous mine physician and naturalist of European repute, J.A. Scopoli, is known to have possessed quite an extensive and, for that time, well-arranged collection of minerals, rocks and ores, which he used for his lessons at the Idrija Technical School where he taught chemistry and metallurgy (1763).

Major significance was also the collection kept by Baltazar Hacquet, which is mentioned in his extensive book, Oryctographia Carniolica (1781). After his departure from Idrija, Hacquet took his collection, which also included samples from the Idrija Mine, with him to Ljubljana.

When the reputed Slovene geologist, M.V. Lipold, took over the administration of the Idrija Mine in 1867, a rich collection of fossils and rocks already existed. Over the next few years, Lipold considerably enriched the collection, which, by its size and content, acquired national importance. In 1912, J. Kropáč, who was primarily interested in the geology of the Idrija ore deposit, wrote that it was largely owing to Lipold that the mine had a valuable collection, a small part of which is today preserved in the Municipal Museum in Idrija.

Following the establishment of the museum, mine experts set up in 1956 a new, extensive stratigraphic-lithological, paleontological and mineralogical collection as well as an impressive collection of mercury ores. Over the next few decades, the collection was enriched with several new samples, and today comprises over 2000 specimens. In 1992 the collection was expertly renewed, considerably enriched and set up in newly renovated rooms in the Idrija Museum.

The second important collection of preserved natural heritage is the Geological Collection, which was created after the establishment of a geological department at the Idrija Mercury Mine.

Figure 16: Collection of cinnabar ores, minerals and rocks.
The collection comprises more than 800 specimens and is undoubtedly the most comprehensive professional collection of the Idrija Mercury Mine. Some of the samples were collected by mine geologists investigating the Idrija Mine and the broader surroundings of Idrija in the period from 1955 – 2003. Owing to its complexity, the specimens are divided into seven thematic collections. Some of the specimens are quite unique and priceless. The samples represent individual geological elements relevant for the development and structure of the ore deposit (mineralogy, petrology, sedimentology, mineral geology, tectonics). As a whole, the collection encompasses the findings of several generations of geologists on the origin of the Idrija ore deposit, which represented a special challenge to many researchers. The decisions adopted during the preparation of the collection are based on exceptionally rich and preserved geological documents. The entire geological collection is also available on computer. The data base contains an expert description, and defines the particularities and location (coordinates, map) of each sample in the ore deposit. Photos of the samples described have been added.

The greater part of the collection is on display and available to researchers in the new administrative quarters of the Mercury Mine within Francisca’s shaft. Some of the most impressive specimens are also exhibited in the entrance building to Anthony’s Main Road, where they may be examined by visitors to the Idrija underworld.

Anthony’s Shaft – A Tourist Mine

After five hundred years of rises and declines, the story of the world’s second largest mercury mine came to a close. Today, out of deep respect for the many generations of courageous miners, the inhabitants of Idrija are continuing their creative endeavours for prosperity. At every step one can see remnants of their legacy, and hear their voices telling the tale of the five hundred-year-old “silver stream”.

Anthony’s Shaft is the oldest part of the Idrija Mine and belongs to the oldest preserved entrances into any mine throughout the world. As such it also serves as a living contact with the town’s mining past. It was dug up in the distant year of 1500, i.e. in the pioneering period of the quest for cinnabar ore, and only a decade after the discovery of autochthonous mercury. The shaft was for no less than two centuries supported only by wood, which had to be, due to the fast decomposition and mouldering of timber, frequently replaced. The general modernisation of the mine, conducted in the 19th century, also included a thorough renovation and reinforcement of Anthony’s Shaft. In 1766 – as with Rake and the “klavže” water barriers it was lined with walls and vaults made of limestone blocks and mortar. The celebrated representative of the Age of Enlightenment, the naturalist and miners’ surgeon B. Hacquet, wrote in 1781 that the elegant oval vaulting was not admired solely by curious on-lookers but also by experts.
For almost half a millennium, miners descended into the pit and returned exhausted from their daily labour precisely along this 300-metre-long shaft. In the mid 19th century, the chapel of the Holy Trinity was built at the end of the shaft. It housed a relief depicting three persons of the Holy Trinity and two statues of their patrons – Saint Acacius and Saint Barbara. From the Chapel, where miners would usually offer their prayers and asked for successful work and safe return, they descended into Attems’s Shaft and walked down some 1000 steps until reaching a depth of 200 metres. Nowadays only 116 steps remain fit to be walked upon.

In the 18th century, an entrance building was constructed in front of the shaft and called Šelštev (from German Geselstube or Stelstube), which served as a register office. In the early morning hours, the miners gathered within the office, poured oil in their lamps, took their register numbers, and, above all, received notification on the arrangement and allocation of working tasks. In those times, “knocking on the rail” from the top (attics) of the recently renovated building summoned workers to their daily “lecture”.

Figure 18: Entrance to the mine museum.

With the refurbishment of Šelštev and Anthony’s Shaft, on 22 June 1994, i.e. on Saint Acacius’s day, the oldest part of the mine was opened to the public. At present it is arranged for tourist visits and enables guests to directly experience the mine’s ambience. The exploration of the shaft starts off in the reconstructed register office, where an attractive multimedia presentation – in several languages – is shown. Subsequent to this, the visitors, under professional guidance and clothed in special green-black jackets and equipped with helmets, descend into the mysterious underworld of miners. The path through the illuminated shafts leads them to the first drops of liquid mercury that is trickling, tear-like, from the black slate. The walk past the extraordinary cave chapel is followed by a descent into deeper parts of the pit all the way to the Acacius horizon, which lies some 100 m below the earth’s surface. During their stroll, visitors get familiar with the miner’s working tasks, and by the end take a rest at the miners’ bench. In this magic underworld they also encounter none other than the mythological cave dwarf “Berkmandelc” (Idrijans prefer to call him Prekmadlc), who turns out to be quite a tame creature. The adventure ends with a return upwards along the steps of Attems’s Shaft.
Anthony’s Shaft is visited annually by around 30,000 people, among which one may notice numerous school pupils and tourist groups as well as an increasing number of foreign guests. In spite of the imminent closing, flooding, and final backfill of this quicksilver labyrinth, Idrija’s historic memory is, thank to these reconstructions, still being saved from oblivion.

NATURAL ATTRACTIONS

Idrija’s world is distinctly marked on the Slovenian map by the upper course of the Idrijca river. The Idrijan mountains, which represent a lively and picturesque transition between sub-alpine and karst landscapes, boast a concentration of natural beauties and sights paralleled by only a few other Slovenian regions. Mountain peaks offering splendid views, vast forests, plateaus, and valleys interlaced with a cultivated landscape – all this conjures up a realm of countless charming places, ancient and untouched villages, and well-tended farm estates.

From a geological point of view, the region is considered to be one of the most interesting in Slovenia, as the famous Idrijan Tectonic Fault passes right across it. The mountains are fairly steep and rise to an average height of 1000 m. The karst plateaus (Črni Vrh Plateau, Vojsko Plateau and Ledine Plateau) extend across a substantial part of the territory, and forests cover no less than three quarters of the region’s surface. The vegetation is exceptionally diverse, since this is an area where Alpine, Dinaric, and partly also Mediterranean flora merge together. In many areas the untouched and pristine natural environment still offers shelter to wildlife and numerous bird species, whereas the crystal-clear Idrijca river and its tributaries provide habitat to a rich variety of fish species.

Larger settlements (Idrija, Spodnja Idrija) were developed in convenient valleys and dales, whereas smaller ones sprung up on sloping ledges and plateaus. In rural areas there is a predominance of small, clusterly villages and detached farms dispersed over higher regions. All across the mountains one may walk along pathways with remarkable views, which lead to mountain outposts and shelters. The entire territory is well interconnected by means of an extensive road network that enables access to all monuments of natural and cultural heritage.

The wider surroundings of Idrija offer numerous possibilities for repose, relaxation, sport, and recreational activities, and in all aspects guarantee the healthy and pleasurable passing of one’s free time. The diverse and picturesque landscape is perfectly suitable for all kinds of short or more extensive walks and excursions, easy to more demanding mountaineering tours, mountain biking and orientation marches, as well as for discovering the treasures of an unspoilt floral world and a peculiar culture of...
isolated settlements of high-lying forest clearings ("rovte"); yet there is still more to be experienced. Some villages provide rides on fairly tame horses, and during summer months the idyllic valley of Idrijska Bela allures visitors to take a refreshing plunge into its emerald waters. The Idrijsko region will also provide ample satisfaction to amateur hunters and fishermen, to those who enjoy gathering mushrooms or herbs, to inquisitive explorers of cosy countryside domesticity and local peculiarities, as well as to researchers of ethnological heritage. Guesthouses in larger towns, as well as village inns and hospitable tourist farms, will make sure that your stay is as gratifying as possible. Idrija’s territory is traversed by the Slovenia Mountaineering Route, Slovenian Geological Path, Via Alpina and numerous local pathways suitable for excursions and strolls.

Upper Idrija Landscape Park and Vojsko Plateau

The Upper Idrija Landscape Park was inaugurated and adequately protected by the Municipality of Idrija in 1993. The park’s area extends across 4230 hectares, of which no less than 4105 hectares of diverse and lively land is covered by forests – for the most part rich in timber and well tended. This vast park extends over the basin of the upper course of the Idrijca river, from the town of Idrija to the springs of a translucent, mountainous river beneath the hamlet of Mrzla Rupa (840 m) on the edges of the Vojskarska planota plateau. It also embraces the valley of the Belca rivulet and the edge of the aforementioned “Vojskarska planota” plateau and “Trnovski gozd” forest. The very complex geology and interesting structure of the territory hides numerous fossil finds. A large part of the park displays karst characteristics, and consequently, sinkholes, caves, and potholes are no exception here. A luxurious and diverse floral world with the presence of Dinaric, Alpine, and sub-Mediterranean plant species proves to be particularly attractive.

The central tourist sights of the park – Divje jezero (Wild lake) and Klavže (water dam), are presented in separate sections, therefore we should at this place briefly describe some other points of interest we may encounter.
Not much more than a stone’s throw from Idrija, beside the unique 400-year-old-Rake near Kamšt (water wheel complex), starts a naturalistic, didactic pathway – a popular stroll lined with rich vegetation. Beneath Joseph’s Shaft, close to the former haulage station, one may admire the preserved locomotives of the former mining railway with their different power systems, and the old “laundry”, where in past times the miner’s wives washed their linen in the cold waters of the Idrijca river. The water channel Rake, originally made of wood and only later (from 1766 to 1770) constructed in brick and stone, is even in the present day used for the operation of the Lenštat hydro-plant. The view directed upwards from the Wild Lake and Kobila opens up to the picturesque valley of Strug, which especially in summertime attracts lovers of nature and healthful recreation. The Strug valley generously displays its crystal clear, murmuring waters, countless water pools, small suspended footbridges and precipitous, overhanging rock walls. During the warm months, the confluence of the Idrijca and Belca rives may get fairly crowded, since the summer bathing spot at Lajšt has been well known and popular with locals for a long time.

From Lajšt, the valley of the ever younger and sparkling Idrijca allures its guests to its upper regions.

Figure 22: Upper Idrijca River.

Depressions below the Tratnik farm estate, where a kaleidoscopically rich palette of variously coloured rock types is disclosed, offers an extraordinarily picturesque sight. The valley under the “klavže” (water dam) narrows into the Kramaršca gorge and Bedrova glen, where the river carved its course on the way from Hudo polje.

Krekovše above Bela – a well-known outpost and research station – in the upper part of the park should also deserve our attention. Luxurious beech forests with their monumental trees bear a stamp of the well-planned management and silvicultural work that spans several centuries. These forests are vigorously flourishing despite their karst base, since Krekovše with its precipitation rate of 3000 mm/m2 per year is one of the rainiest spots in Slovenia. Near the pathway leading to Mrzla Rupa at Hudo polje, there stands a monument erected in the memory of the Partisan Hospital Pavla, which during World War II provided shelter and medical assistance for some 1000 injured Partisans. Our attention may also be drawn by other landmarks of ancient history: the supposed remnants of the Roman “Limes”. Tradition claims that during the 4th and 5th century a system of protective walls was built in this area, which was
intended for the control of movement from the Idrijca Valley to the valley of the Trebuša river and further to Italy. A part of this wall in Mrzla Rupa near Habe certainly invites further exploration and research. The unique natural point of interest is the virgin forest of Bukov vrh, located in the large sinkhole between Hudo polje and Smrekova draga (Spruce Glen). This intact virgin forest extends over an area of 9 hectares at an altitude of 1314 m above sea level.

Vojsko Plateau

The Vojsko Plateau is a broad and fragmented plain located at an altitude of around 1000 m above sea level and stretches across some 3600 hectares of land, its circumference measuring over 10 km. As the karst part of the Idrijan hills, it extends high above the Idrijca, Kanomljica and Trebuša Valleys. On the plateau and at its edges, one may encounter typical karst phenomena, such as shallow potholes and caves carved in dolomite, short sinking creeks, and low-lying powerful springs. The climate is a mountainous one with fresh summers and prolonged winters; the enduring snow cover would occasionally persist for no less than six months. During summer months the pristinely natural, serene, and idyllic landscape fanned by fresh air dresses itself in a vivid and variegated carpet of grasses and exceptionally rich flora. Side by side, meadows, pastures, and mixed forests extend in perfect harmony.

Vojsko is actually scattered across the entire plateau, since individual farms and hamlets may be dispersed even several kilometres apart. In many places we may come across well-preserved, characteristic large farm buildings with interesting elements of old architecture. One should also mention that Vojsko stands out as one of the highest lying Slovenian villages and as the highest located hamlet in the Primorska region. This settlement was first referred to in 1337, when the pioneering colonisation of the Idrijsko region began. Throughout the centuries, the local people earned their living by cattle breeding, forestry, and modes agriculture, whereby some domestic handicrafts such as nail and lace making were also fairly well developed. Unfortunately, Vojsko has been in recent decades, similar to many other regions, harshly affected by the process of a steady fall in agrarian activities. Agriculture has decreased and employment for the most part has shifted to the valley. The number of inhabitants presently remains static at around 200, and many farm estates have been abandoned. In their place, however, numerous holiday cottages have sprung up, which come to life mostly during weekends. In recent times, the Centre of School and After-School Activities has brought a slight revival to Vojsko, and the cultural association, Planina, is also constantly active.)
The area has many excellent view-points. One of the most excellent is undoubtedly Hudournik (1148 m). The views from Hudournik provide a vast panorama whereby one may observe, as on the palm of one’s hand, the landscapes stretching towards Julian Alps, with its patriarch Mount Triglav, and further on all the way to the Dolomites in Italy. From here one may perceive in all its glory the famous tectonic Idrijan fault, which runs from Venetian Slovenia, over rivers Idrija, Trebuša, Kanomlja, to town of Idrija to the Notranjska region further to Croatia. It is probably needless to point out that the Vojsko planota is not to be overlooked by mountaineers, since the Slovenian Mountaineering Route traverses it.

4. Geopark Idrija Initiative in Slovenia

The unique landscape strikingly reflects the underlying geology in terms of rock diversity, unique fossil sites, ore deposits, karst and hydrologic phenomena and complex tectonic history. The main challenge is how to interpret this heritage and get people to identify with it. The local communities will have to decide on the most effective management scheme based on relevant analysis, effective interpretation and marketing strategy and development of a tourist infrastructure to provide the access, facilities and services for different target groups.

The most significant and known worldwide is Idrija Mercury mine. Anthony’s Main Road in the tourist mine features the only accessible native mercury site in the world. No systematic protection of geological heritage in the community of Idrija had been implemented at the municipal level before 1986, when the Ordinance on the Proclamation of Cultural and Historical Monuments and Natural Attractions in the Municipality of Idrija was issued. Recently the inventory of valuable natural phenomena in the area of aspiring Geopark Idrija has been updated from practical point of view. We also added some worth seeing sites that have not been in this inventory but we think there is a possibility for good interpretation of geo-site.

In 1993 The Upper Idrijca Valley landscape was set up by a municipality decree on the area of 47 km² with a range of various natural values. It features seven natural monuments, 45 natural caves and 46 other locations of natural heritage of national or local importance. Geomorphological (karst phenomena, natural caves, springs...), geological (faults, tectonic sites, unique fossil sites...) and botanical natural values prevail. The Wild Lake natural monument is one of the most significant karst phenomena in the area. The landscape park also includes important historical and technological sites of cultural heritage that are directly related to the mining history in Idrija region. The Geopark that we are intending to set up within a year is planned for a whole area of Idrija Municipality and The Upper Idrijca Valley would be one part of it. So, the whole area of Geopark is planned to be 293,7 km² from the beginning with open initiative for communities and municipalities in the surrounding to join in later.

One of the first phases in the preparation of application dossier and consequently also the management plan for the new Geopark is to select the natural sites to be presented, to prepare proper interpretation for different target groups (schools, universities, scientific interpretation, general public, etc.) and to protect those that are too delicate or endangered to be made accessible to the public.